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Abstract

3D Gaussian Splatting (3DGS) has emerged as a pow-
erful technique for real-time novel-view synthesis, offering
high visual fidelity and speed. However, in autonomous
driving scenarios, where camera viewpoints are limited and
scenes are often noisy or partially observed, 3DGS suffers
from artifacts such as floating Gaussians, color bleeding,
and geometric distortions. We present Diffusion-Guided
Gaussian Splatting (Di3DGS), a hybrid framework that in-
tegrates a diffusion-based denoising model into the 3DGS
training loop. By generating synthetic pseudo-views from
novel angles, refining them through a diffusion network,
and reprojecting the cleaned images back into the optimiza-
tion pipeline, Di3DGS proactively reduces artifacts and im-
proves reconstruction quality in underconstrained regions.
Using the nuScenes dataset, we evaluated our approach to
see if it achieves better geometric consistency and visual
realism in sparse-view settings.

1. Introduction
Real-time novel-view synthesis is a crucial component

in perception systems for autonomous vehicles, enabling
downstream tasks such as object tracking, occlusion
reasoning, and scene understanding. Among recent ap-
proaches, 3D Gaussian Splatting (3DGS) has emerged as a
compelling solution, offering photorealistic rendering with
low latency and competitive fidelity. Unlike volumetric
methods or mesh-based rendering, 3DGS directly fits a
sparse set of anisotropic Gaussians to match reprojected
views, making it especially attractive for time-sensitive
applications.

However, this approach breaks down in practical au-
tonomous driving scenarios, where camera viewpoints are
limited by physical constraints and the environment often
contains motion blur, dynamic objects, or sensor noise.
These conditions lead to severe artifacts during 3DGS
optimization, including floating or ”fuzzy” Gaussians,
color bleeding, and geometric distortions, especially in

regions not well-constrained by input views. Such errors
not only degrade visual quality but also jeopardize the relia-
bility of downstream tasks such as tracking and localization.

To address this, we propose Diffusion-Guided Gaussian
Splatting (Di3DGS), a hybrid pipeline that augments 3DGS
with a learned diffusion-based denoiser. Our method
inserts a diffusion cleanup module into the training loop
by first rendering synthetic pseudo-views from novel,
underconstrained viewpoints. These views are then passed
through a diffusion network trained to suppress artifacts
and enhance structural detail. The cleaned views are
reprojected into 3DGS as corrected supervision signals,
guiding the optimizer to converge on more accurate
and photorealistic scene representations. Crucially, our
closed-loop formulation retains differentiability through
the renderer while keeping the diffusion model frozen,
preserving training stability.

Figure 1. Camera Setup on Data Collection Cars

We evaluate Di3DGS on a subset of the nuScenes
dataset, using five of the six available cameras for training
and reserving the sixth (front-facing) view for validation as
demonstrated in Figures 1. Initial results using the base-
line 3DGS model show over-smoothed textures, geometry
warping, and low contrast in reconstructed scenes. These
artifacts are notably reduced when integrating our diffusion-
guided refinement, suggesting improved generalization and
geometric consistency. This work provides a potential ap-
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proach toward robust real-time 3D perception under real-
world sensor limitations.

2. Related Work

Real-time 3D scene reconstruction has been a central
challenge in autonomous driving, where fast and accurate
environment modeling is crucial for safe navigation. Vari-
ous techniques have emerged to address this problem, with
an increasing focus on novel-view synthesis, artifact correc-
tion, and leveraging limited sensor inputs.

3D Gaussian Splatting (3DGS), introduced by Kerbl et
al. [1], is a seminal method that enables high-quality novel-
view synthesis by fitting anisotropic Gaussians to a sparse
set of 3D observations. The primary advantage of 3DGS is
its ability to model a scene with high speed and low compu-
tational overhead, making it suitable for real-time applica-
tions. However, as with many real-time methods, the accu-
racy of 3DGS diminishes in sparse-view scenarios, leading
to artifacts such as floating Gaussians, color bleeding, and
geometric distortions, particularly in regions with insuffi-
cient observation.

Building on this foundation, DrivingForward [2] pro-
posed a feed-forward pipeline that leverages only RGB in-
put for real-time scene reconstruction. This approach re-
moves the dependency on LiDAR, which is typically expen-
sive and resource-intensive, while still delivering compara-
ble reconstruction quality. However, it faces similar chal-
lenges to the original 3DGS method in terms of handling
sparse viewpoints and sensor noise, particularly in dynamic
urban environments.

To address dynamic objects, DrivingGaussian [4] ex-
tends 3DGS by incorporating LiDAR priors and dynamic
Gaussian graphs. This approach allows the model to better
handle moving objects and occlusions in driving scenarios.
While this improves the model’s robustness in dynamic set-
tings, the approach still relies heavily on accurate LiDAR
data, which can be noisy and sparse in real-world condi-
tions.

In the domain of artifact correction, DIFIX3D+ [3] intro-
duces a single-step diffusion model that applies denoising
to 3D reconstructions. While this method successfully re-
duces rendering artifacts, it is limited by its one-step denois-
ing process, which may not effectively address the complex,
multi-step optimizations required for real-time autonomous
driving scenarios.

In summary, while previous works have made significant
strides in improving speed, fidelity, and artifact correction
for 3D scene reconstruction, our Di3DGS framework intro-
duces a novel approach by incorporating diffusion-based ar-
tifact removal directly into the optimization loop, offering a
solution for real-time novel-view synthesis in autonomous
driving environments.

3. Data
Our project uses a curated subset of the nuScenes dataset,

a large-scale autonomous driving dataset collected in urban
environments. nuScenes includes multi-modal sensor data
such as RGB images, LiDAR, radar, and GPS/IMU. For this
project, we focus solely on the RGB camera data captured
from six fixed surround-view cameras mounted on the vehi-
cle (front, rear, left, right, front-left, and front-right), which
together provide a full 360-degree view of the scene.

To ensure stable 3D reconstruction and minimize the im-
pact of dynamic objects, we select scenes based on the den-
sity of moving entities (e.g., vehicles, pedestrians). Using
the detection annotations provided with the dataset, we rank
scenes by dynamic object count and select those with the
least activity. This filtering step allows us to target scenar-
ios with minimal motion, reducing reconstruction artifacts
caused by object movement between frames. By doing this,
we can choose the least dynamic scenes for our training and
evaluation without other noises.

4. Methods
Our approach, Diffusion-Guided Gaussian Splatting

(Di3DGS), builds upon the strengths of 3DGS by introduc-
ing a closed-loop, diffusion-guided refinement step. We
integrate a trained diffusion model, stable-diffusion-v1-5,
directly fit it into the 3DGS optimization pipeline to cor-
rect artifacts proactively during training. By generating and
refining pseudo-views from intermediate angles, Di3DGS
tackles the challenge of sparse-view reconstruction in driv-
ing environments, reducing artifacts such as color bleeding
and geometry warping. The model architecture is illustrated
in Figures 2.

Figure 2. Di3DGS Architecture

4.1. Novel View Generation

Novel View Generation. Let Cref denote the set of
reference cameras used to train the 3D Gaussian Splat-



ting (3DGS) model, and let Ctgt denote the held-out tar-
get cameras reserved for evaluation. For each target camera
ctgt ∈ Ctgt, we identify its nearest neighbor cref ∈ Cref ac-
cording to pose-space distance. During training, a series of
novel views is synthesized by interpolating the camera pose
from cref toward ctgt over multiple optimization iterations.
As the 3DGS model parameters are updated, these interpo-
lated views gradually converge to the held-out target poses,
enabling quantitative evaluation on Ctgt.

4.2. Two-Step Diffusion Enhancer

To mitigate residual artifacts in rendered views, we em-
ploy the Stable Diffusion v1.5 model in a two-step denois-
ing pipeline. Specifically, each input image is first en-
coded into the latent space and then iteratively refined over
two diffusion steps. The model is conditioned on both
a positive prompt—“A sharp, high-resolution photo of a
road scene, no blur, no motion artifacts”—and a negative
prompt—“blurry, warped, noisy, distorted, painterly.” We
configure the denoising strength parameter to 0.3 and the
classifier-free guidance scale to 0.2. Under these settings,
the diffusion process effectively suppresses noise and ge-
ometric distortions while preserving high-frequency detail,
as demonstrated in Figures 3.

Figure 3. Result of applying the diffusion model to the 3DGS-
generated output

4.3. 3DGS Optimization

We introduce a hyperparameter Tdiff = 50, meaning that
every Tdiff iterations we invoke the diffusion enhancer on
all novel-view renders. Concretely, let Ctarget and Cnovel
denote the sets of held-out reference cameras (with ground-
truth images Icgt) and interpolated novel camera poses, re-
spectively. At iteration t, if t mod Tdiff = 0, then for each
c ∈ Cnovel we perform

Icrend = Render(c), Icdiff = DiffusionEnhancer
(
Icrend

)
.

The overall loss used to optimize the 3DGS parameters is

L∞total =
∑

c∈Ctarget

L
(
Icgt, I

c
rend

)
+ λ

∑
c∈Cnovel

L
(
Icdiff , I

c
rend

)
,

where L(·, ·) denotes a L1 pixel-wise reconstruction loss. λ
is a hyperparameter for regularization. Because the diffu-
sion network is kept fixed (frozen), no gradients are back-
propagated through it.

5. Experiments

5.1. Environment Setup

Configuring the full Di3DGS pipeline required a non-
trivial orchestration of heterogeneous software stacks and
GPU-accelerated containers. Initially, we built three sep-
arate Docker images—one for COLMAP, one for 3D
Gaussian Splatting (3DGS), and one for Stable Diffusion
v1.5—each leveraging NVIDIA’s Container Toolkit to ex-
pose CUDA capabilities. During local development, all
containers ran on an NVIDIA RTX A5500 Laptop GPU
(Driver 570.133.20, CUDA 12.8, 16 GB VRAM). The Sta-
ble Diffusion container remained a severe bottleneck, an-
chored by its hardware requirement. On the A5500, invok-
ing a two-step denoising pass took approximately six min-
utes per image. To overcome these constraints, we migrated
to an NVIDIA GeForce RTX 4090 (Driver 575.51.03,
CUDA 12.9, 24 GB VRAM). Once deployed on the RTX
4090 instance, the 3DGS + diffusion model training loop.
It resulted in an end-to-end runtime of 1 hour 32 minutes 14
seconds.

5.2. Reconstruction Analysis

Shown below are several reconstructions showing the
ground truth as well as before and after applying our dif-
fusion model to the reconstruction. Out of the shown ex-
amples, we can qualitatively analyze the results. In the left
target view of Figure 5.2, we can see that our method ap-
plied to the target view produced a much clearer image than
without our diffusion model. The reconstruction is of fairly
high quality, showcasing the capabilities of our method.

Figure 4. This figure shows two individual image reconstructions
with the target view, one on the left column and one on the right
column. Top: ground truth, Middle: without diffusion, Bottom:
with diffusion.



In the right target view in Figure 5.2, however, while
our method with the diffusion model does produce a better
and nearly identical result to the ground truth, it is distinc-
tively missing the motorcyclist who is present in the ground
truth image. This omission may be attributed to limita-
tions in the input conditioning data provided to the diffusion
model. Since our approach relies on multi-view consistency
and prior 3D reconstructions, transient or fast-moving ob-
jects like the motorcyclist may not be consistently captured
across all input views or might be poorly represented in the
Gaussian splatting stage. As a result, the diffusion model
may interpret such inconsistent elements as noise and sup-
press them during the reconstruction process.

Figure 5. This figure shows two individual image reconstructions
with the novel view, one on the left column and one on the right
column. Top: ground truth, Middle: without diffusion, Bottom:
with diffusion.

This highlights a potential failure mode of our method
in handling dynamic objects, especially when they are not
well-represented in the underlying geometric prior. In
the left novel view shown in Figure 5.2, we can see a
case where the diffusion output is noticeably darker than
the non-diffusion and the ground truth images. This may
be attributed to the diffusion model’s tendency to favor
smoother, globally consistent shading, which can some-
times lead to underexposed outputs in regions with com-
plex lighting. Additionally, the darker lighting might indi-
cate that the model inferred shadows or ambient occlusion
effects that were not fully captured in the original 3DGS re-
construction. While this results in a more visually coherent
and less artifact-prone image as the image without diffusion
appears over-exposed to light which loses detail in some ar-
eas, the darker diffusion image also reduces contrast and ob-
scures finer details when compared to the ground truth. Ad-
ditionally, the diffusion image doesn’t represent the actual

brightness of the ground truth which the non-diffusion im-
age does capture, even though the overall details and quality
of the diffusion output are more accurate. This highlights a
trade-off between perceptual realism and photometric accu-
racy in the novel view synthesis pipeline.

In the right novel view shown in Figure 5.2, however,
we can see drastic improvements over the non-diffusion
output. The diffusion image is very similar to the ground
truth while the non-diffusion image is very blurry and loses
most of the image’s detail. This suggests that the diffusion
model effectively refines the geometry and texture recon-
struction in challenging regions where the base 3DGS ren-
dering struggles. The structures in the image are effectively
preserved with much higher fidelity in the diffusion output.
The sharper appearance and improved semantic alignment
with the ground truth indicate that the model is not only de-
noising the input but also enhancing structural consistency
across views. This reinforces the effectiveness of integrat-
ing learned priors from diffusion models into the recon-
struction pipeline, particularly for synthesizing novel views
where the original data may be sparse or noisy.

5.3. Quantitave Analysis

Table 1 summarizes the reconstruction quality of a stan-
dard 3D Gaussian Splatting (3DGS) pipeline against our en-
hanced model across three evaluation metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS).

Model PSNR SSIM LPIPS
3D gaussian splatting 21.9095363 0.79961448 0.3499600
Our Model 25.6269416 0.84147250 0.286909192

Table 1. Quantitative evaluation between 3DGS and our model.

1. PSNR (Peak Signal-to-Noise Ratio) The PSNR met-
ric is defined as

PSNR = 10 log
(

MAX2

MSE

)
,

where MAX is the maximum possible pixel value (e.g., 1.0
for normalized images) and MSE is the mean-squared er-
ror between the reconstructed image and the ground-truth.
A higher PSNR indicates lower average pixel-wise error.
From Table 1, 3DGS attains PSNR ≈ 21.91 dB, whereas
our model achieves PSNR ≈ 25.63 dB, representing an im-
provement of approximately 3.72 dB. This gain implies that
our model’s pixel-level fidelity is substantially better: sub-
tle color shifts and noise present in 3DGS renders are sig-
nificantly reduced, bringing reconstructed intensities much
closer to the reference photographs.

2. SSIM (Structural Similarity Index) SSIM evalu-
ates perceived image quality by comparing luminance, con-
trast, and structural correlation over local patches. Its value



ranges from 0 to 1, where 1 indicates perfect structural
agreement. Table 1 shows:

SSIM3DGS ≈ 0.7996, SSIMOurs ≈ 0.8415.

An increase of approximately 0.0419 in SSIM means our
reconstructions preserve edges, textures, and geometric de-
tails more faithfully, especially for thin structures (e.g., fo-
liage, railings) and fine surface patterns (e.g., brickwork).
Whereas 3DGS tends to blur or wash out such details under
sparse-view conditions, our model maintains higher local
contrast and sharper structural fidelity.

3. LPIPS (Learned Perceptual Image Patch Similarity)
LPIPS measures perceptual similarity by comparing fea-
ture activations extracted from a pre-trained deep network
(e.g., VGG or AlexNet). Lower LPIPS values correspond
to reconstructions that are more perceptually similar to the
ground-truth. The values in Table 1 are:

LPIPS3DGS ≈ 0.34996, LPIPSOurs ≈ 0.28691.

A reduction of about 0.0630 in LPIPS indicates that, in deep
feature space, our rendered images appear significantly
more realistic. This improvement translates to crisper light-
ing gradients, more accurate shading, and fewer “floaters”
or distorted patches in areas where 3DGS struggles to con-
strain geometry.

4. Summary

• Photometric Accuracy (PSNR): Our model reduces
pixel-wise MSE by over half (as evidenced by a ∼4 dB
PSNR gain), meaning reconstructed intensities align
much more closely with real photographs.

• Structural Fidelity (SSIM): Boosting SSIM from ∼
0.80 to ∼0.84 reflects a clear enhancement in preserv-
ing geometric edges and local contrast which is critical
for accurately rendering thin or high-frequency struc-
tures.

• Perceptual Realism (LPIPS): A ∼ 0.06 decrease in
LPIPS shows that the perceptual “look and feel” of the
images is significantly more convincing to human ob-
servers, with fewer unnatural textures or ghosting arti-
facts.

Taken together, these quantitative gains confirm that our
diffusion-based artifact removal and distillation strategy,
when integrated into the 3DGS pipeline, yields reconstruc-
tions that are both quantitatively closer (in PSNR/SSIM
sense) and perceptually more faithful (per LPIPS) to the
ground-truth compared to vanilla 3DGS.

6. Conclusion
In this work, we have introduced Diffusion-Guided

Gaussian Splatting (Di3DGS), a hybrid reconstruction
framework that leverages a pretrained diffusion denoiser
to correct artifacts in 3D Gaussian Splatting (3DGS) un-
der sparse-view, autonomous-driving scenarios. Our main
findings and contributions can be summarized as follows:

1. Significant Improvement with Fewer Views. By in-
tegrating a two-step diffusion enhancer (Stable Diffu-
sion v1.5) into the 3DGS training loop, Di3DGS dra-
matically reduces common artifacts, such as floating
or “fuzzy” Gaussians, color bleeding, and geometric
warping, even when only six camera views are avail-
able. Quantitatively, compared to vanilla 3DGS, our
method raises PSNR from ∼ 21.91 dB to ∼ 25.63 dB
(+3.72 dB), increases SSIM from ∼ 0.80 to ∼ 0.84
(+0.04), and lowers LPIPS from ∼ 0.35 to ∼ 0.29
(–0.06). These gains are remarkable given that many
competing techniques employ 10+ cameras or LiDAR
priors. In short, with just six RGB images, Di3DGS
achieves reconstruction fidelity on par with, or better
than, methods that rely on far denser sensing. This
suggests that diffusion-guided supervision effectively
“hallucinates” plausible detail in underconstrained re-
gions, allowing the 3DGS model to converge on high-
quality geometry and texture with minimal input.

2. Qualitative Benefits and Failure Modes. Beyond
the numerical metrics, our qualitative analysis shows
that Di3DGS yields noticeably sharper edges and
more coherent textures, especially around thin struc-
tures (e.g., roadside signs, poles) and fine-grained sur-
faces (e.g., painted road stripes). In scenes where
vanilla 3DGS produces washed-out or “smeared” col-
ors, Di3DGS outputs appear more photorealistic and
closer to ground truth. However, we also observe that
transient or fast-moving objects (e.g., a motorcyclist in
one example) can be suppressed by the diffusion en-
hancer if they are not consistently visible across the
six input views. This highlights an important failure
mode: dynamic elements may be interpreted as “noise”
by the denoiser and hence dropped from the recon-
struction. Similarly, in regions with complex light-
ing, the diffusion model sometimes underexposes cer-
tain patches (favoring smoother shading) and may not
faithfully reproduce absolute brightness. These trade-
offs between perceptual realism and photometric accu-
racy point to areas for future refinement.

3. Trade-off Between Speed and Quality. One of the
original appeals of 3D Gaussian Splatting is its real-
time performance, with latencies measured in tens
of milliseconds on commodity GPUs. Unfortunately,



injecting a diffusion denoiser into the training loop
necessarily slows down the pipeline. On our local
RTX A5500 (16GB VRAM), each two-step diffusion
enhancement required ≈ 6 minutes per image; on
an RTX 4090 (24GB VRAM), the overhead was re-
duced but remained substantial, resulting in an overall
1 h 32min 14s run time for 30,000 optimization itera-
tions (with diffusion applied every 50 iterations). In
other words, while Di3DGS significantly improves re-
construction quality, it cannot yet meet strict real-time
demands in its current form. Real-time applications,
such as live-view rendering for intelligent vehicles,
would require further acceleration or approxima-
tion strategies.

4. Key Lessons Learned.

• Sparse-View Viability. Even with only six cam-
eras, a diffusion-augmented supervision signal
can push a 3DGS model to reconstruct high-
fidelity scenes. This suggests that learned 2D
priors (e.g., single-step diffusion networks) are
extremely effective at filling in missing geometry
and texture when posed with underconstrained
inputs.

• Diffusion as a Strong Prior, but at a Cost. In-
tegrating a frozen diffusion network into a dif-
ferentiable rendering loop can dramatically re-
duce artifacts, but the computational cost is non-
negligible. Building a stable and efficient in-
terface between a PyTorch-based denoiser and
a CUDA-accelerated 3DGS backend required
careful orchestration (multi-stage Docker builds,
memory-efficient data pipelines) and continues
to pose optimization challenges.

• Dynamic Content Is Hard. Because our diffu-
sion model was trained on static images, fast-
moving objects (vehicles, pedestrians) often vi-
olated the multi-view consistency assumed by
Di3DGS. Consequently, these dynamic elements
were sometimes “infilled” as if they were arti-
facts, rather than preserved in the final recon-
struction.

6.1. Future Directions

While Di3DGS represents a promising step toward
artifact-free, sparse-view novel-view synthesis, several av-
enues remain open for improvement and new applications:

1. Speed Optimization & Real-Time Feasibility.

• Distilled or Quantized Denoiser. Replace the
current two-step Stable Diffusion model with a
distilled, low-latency U-Net (e.g., a lightweight

single-step diffusion network or a quantized ver-
sion). This could reduce per-image inference
time from minutes to seconds or sub-seconds.

• Asynchronous / Patch-Based Denoising. Instead
of running diffusion on entire full-resolution
images, one could denoise only “problematic”
patches or use a coarse-to-fine strategy, focusing
computational budget where the 3DGS model is
most uncertain.

2. Handling Dynamic and Transient Scene Elements.

• Dynamic Masking or Reprojection Consistency.
Introduce a module that identifies dynamic pixels
(e.g., using optical flow or per-view consistency
checks) and prevents the diffusion enhancer from
“removing” them.

• Joint 2D-3D Motion Models. Incorporate a
motion-aware diffusion prior that conditions on
both spatial and temporal context (e.g., feeding
multiple time-adjacent frames into the denoiser)
to better preserve moving objects.

3. Generalization to Other Domains.
While we have focused on autonomous-driving scenes,
Di3DGS could be extended to other fields where real-
time or near-real-time 3D reconstruction is desirable
but data are sparse or noisy:

• Robotics & SLAM. For indoor or warehouse
robotics, where a limited number of cameras (or
a single RGB-D sensor) capture novel environ-
ments, a diffusion-guided pipeline could improve
semantic mapping and obstacle avoidance under
challenging lighting or clutter.

• Augmented/Virtual Reality (AR/VR). Mobile de-
vices and headsets typically rely on few cameras
(or low-resolution depth sensors). Di3DGS-style
denoising could allow for faster scene capture
and more photorealistic virtual object insertion,
even in handheld or wearable form factors.

4. Extending to Multimodal Priors.

• LiDAR + Diffusion. Incorporate LiDAR-derived
point clouds as a complementary prior to the dif-
fusion network, so that the denoiser no longer
has to “hallucinate” geometry from six camera
views alone. By combining sparse yet accurate
LiDAR depth with learned image priors, the sys-
tem could more reliably reconstruct both static
and dynamic elements.



• Semantic Conditioning. Train a diffusion model
that takes semantic segmentation or object-
detection heatmaps as additional conditioning in-
puts. This could allow the denoiser to explicitly
respect object boundaries (e.g., cars, pedestrians)
and avoid merging them into the background.

5. Adaptive View Scheduling.

• Confidence-Based Diffusion Triggers. Instead
of applying diffusion every 50 iterations, moni-
tor a per-view uncertainty metric (e.g., 3D vari-
ance in Gaussian weights) and invoke diffusion
only when the model is “unsure.” This would
save compute by avoiding unnecessary denoising
when reconstructions are already confident.

In summary, Di3DGS demonstrates that diffusion-
based priors can empower sparse-view 3D reconstruction
to achieve surprising fidelity, far exceeding what vanilla
3D Gaussian Splatting produces when only six cameras are
available. The quantitative boost in PSNR/SSIM/LPIPS and
qualitative improvements in structure and texture confirm
the efficacy of combining pretrained 2D denoisers with dif-
ferentiable 3D renderers. At the same time, our study un-
derscores the trade-off between quality and speed: inte-
grating diffusion currently precludes strict real-time perfor-
mance. For application domains where offline or near-real-
time processing is acceptable such as large-scale mapping,
urban-drive dataset curation, or AR/VR content generation,
Di3DGS offers a powerful tool to reduce artifacts without
requiring dense multi-camera rigs or expensive LiDAR ar-
rays. Looking forward, we anticipate that further algorith-
mic optimizations (distilled denoisers, dynamic scheduling)
and tighter GPU integration will enable the next gener-
ation of real-time, diffusion-guided 3D reconstruction,
expanding the reach of 3DGS-style rendering into ever
more resource-constrained and dynamic environments.
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